
Pegasus: A Framework for Sound Continuous
Invariant Generation

Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan,
Katherine Kosaian, and André Platzer

Carnegie Mellon University, USA

Showcase Track, ICSE 2023, Melbourne, Australia

17 May 2023



Outline

Introduction: Formal Verification for CPS

Background: Continuous Invariants and Checking

Pegasus: A Framework for Sound Continuous Invariant Generation

Conclusion

1 / 17



Introduction
What this talk is about

Formal verification for cyber-physical systems (CPS)

Discrete computational controllers
interacting with

continuous real-world physics,
modeled as hybrid systems

Mathematics-based
tools & techniques providing

rigorous guarantees
for computer systems

Why? Need rigorous & exhaustive proofs for these safety-critical systems
Alongside nonexhaustive simulation, field testing, and other validation methods

2 / 17



Introduction
What this talk is about

Formal verification for cyber-physical systems (CPS)

Discrete computational controllers
interacting with

continuous real-world physics,
modeled as hybrid systems

Mathematics-based
tools & techniques providing

rigorous guarantees
for computer systems

Why? Need rigorous & exhaustive proofs for these safety-critical systems
Alongside nonexhaustive simulation, field testing, and other validation methods

2 / 17



Introduction
What this talk is about

Formal verification for cyber-physical systems (CPS)

Discrete computational controllers
interacting with

continuous real-world physics,
modeled as hybrid systems

Mathematics-based
tools & techniques providing

rigorous guarantees
for computer systems

Why? Need rigorous & exhaustive proofs for these safety-critical systems
Alongside nonexhaustive simulation, field testing, and other validation methods

2 / 17



Introduction
What this talk is about

Formal verification for cyber-physical systems (CPS)

Discrete computational controllers
interacting with

continuous real-world physics,
modeled as hybrid systems

Mathematics-based
tools & techniques providing

rigorous guarantees
for computer systems

Why? Need rigorous & exhaustive proofs for these safety-critical systems
Alongside nonexhaustive simulation, field testing, and other validation methods

2 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

3 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

3 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

3 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

Invariants help tighten overapprox-
imations and (sometimes) extend
analyses to infinite time horizons

Invariants are key ingredients in
ODE safety proofs and part of
hybrid system loop invariants

3 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

Invariants are key ingredients in
ODE safety proofs and part of
hybrid system loop invariants

3 / 17



Outline

Introduction: Formal Verification for CPS

Background: Continuous Invariants and Checking

Pegasus: A Framework for Sound Continuous Invariant Generation

Conclusion

4 / 17



Invariants in Discrete Systems

inductive
invariant

Claim: System cannot reach bad state(s)
from the initial state(s).
Justification: The invariant is closed un-
der the system’s discrete transitions.

Idea: Proving safety for system reduces
to finding a suitable invariant

5 / 17



Invariants in Continuous Systems

 

Ordinary Differential Equations (ODEs)

States: x⃗ ∈ Rn

Dynamics: x⃗′ = f(x⃗)

Trajectories of the system (in green) are
solutions of the ODE from an initial state

Claim: System cannot reach bad
state(s) from the initial state(s).
Justification: The invariant is closed un-
der the system’s continuous dynamics

Idea: Proving safety for continuous
systems reduces to finding suitable
continuous invariants

6 / 17



Invariants in Continuous Systems

 

Ordinary Differential Equations (ODEs)

States: x⃗ ∈ Rn

Dynamics: x⃗′ = f(x⃗)

Trajectories of the system (in green) are
solutions of the ODE from an initial state

Claim: System cannot reach bad
state(s) from the initial state(s).
Justification: The invariant is closed un-
der the system’s continuous dynamics

Idea: Proving safety for continuous
systems reduces to finding suitable
continuous invariants

6 / 17



Checking Continuous Invariants

Checking whether a (polynomial arithmetic) formula defines a continuous invariant is decidable
(Liu, Zhan & Zhao, EMSOFT 2011).

LZZ procedureformula, ODE yes/no

Differential dynamic logic dL is sound and complete for proving continuous invariance
(Platzer & Tan, LICS 2018).

proverformula, ODE
formal proof (or disproof)
of invariance(KeYmaera X)

dL prover

7 / 17



Checking Continuous Invariants

Checking whether a (polynomial arithmetic) formula defines a continuous invariant is decidable
(Liu, Zhan & Zhao, EMSOFT 2011).

LZZ procedureformula, ODE yes/no

Differential dynamic logic dL is sound and complete for proving continuous invariance
(Platzer & Tan, LICS 2018).

proverformula, ODE
formal proof (or disproof)
of invariance(KeYmaera X)

dL prover

7 / 17



Outline

Introduction: Formal Verification for CPS

Background: Continuous Invariants and Checking

Pegasus: A Framework for Sound Continuous Invariant Generation

Conclusion

8 / 17



Pegasus Overview

This work: Sound and automated continuous invariant generation with Pegasus

Pegasus (implemented in Wolfram Language) has:
▶ a simple continuous safety verification problem classifier
▶ invariant generation primitive methods and strategies for combining them
▶ proof hints for sound invariant checking in KeYmaera X

9 / 17



Primitives
Qualitative analysis

Idea: Perform discrete abstraction using heuristics & other sources in the input problem
(using LZZ to test the transition relation)

Some sources of predicates:
▶ right-hand sides of ODEs, their factors, etc.
▶ functions defining the pre/postcondition and domains
▶ physically meaningful quantities (e.g. divergence of the vector field)

10 / 17



Primitives
First integrals and Darboux polynomials

Idea: Find conserved quantities of the continuous system
Functions p such that p′ = 0 (i.e. the rate of change of p w.r.t. the ODEs is 0)

Techniques:
▶ Polynomial first integrals (of bounded degree) can be generated using linear algebra
▶ Darboux polynomials p′ = αp, for polynomial α (gen. with computer algebra techniques)
▶ Rational functions p = q

r , for polynomials q, r (combine Darboux poly. and lin. algebra)

11 / 17



Primitives
Barrier certificates

Idea: find a continuous invariant p ≤ 0 numerically (Prajna and Jadbabaie, HSCC 2004)
Generalizes to vector barrier certificates (our work, FM 2018)

Techniques:
▶ differential inequalities, e.g. p′ ≤ 0, p′ ≤ λp (λ ∈ R), and
▶ sum-of-squares decomposition (via semidefinite programming)
▶ linear programming relaxations

12 / 17



Strategies
Differential saturation

Idea: Iteratively refine the candidate invariant by cycling through primitive methods until
saturation or a suitable invariant is found

▶ Refinement 1 (using a Darboux polynomial: x1 > 0)
▶ Refinement 2 (using qualitative analysis x1 > 0 ∧ x2 > 0)
▶ Refinement 3 (using a barrier certificate x1 > 0 ∧ x2 > 0 ∧ p ≤ 0)

p = 3
8 x1 + 23

56 x2
1 − 123

56 x2 + 3
14 x1x2 + 29

28 x2
2 − 1

13 / 17



Strategies
Differential saturation

Idea: Iteratively refine the candidate invariant by cycling through primitive methods until
saturation or a suitable invariant is found

▶ Refinement 1 (using a Darboux polynomial: x1 > 0)

▶ Refinement 2 (using qualitative analysis x1 > 0 ∧ x2 > 0)
▶ Refinement 3 (using a barrier certificate x1 > 0 ∧ x2 > 0 ∧ p ≤ 0)

p = 3
8 x1 + 23

56 x2
1 − 123

56 x2 + 3
14 x1x2 + 29

28 x2
2 − 1

13 / 17



Strategies
Differential saturation

Idea: Iteratively refine the candidate invariant by cycling through primitive methods until
saturation or a suitable invariant is found

▶ Refinement 1 (using a Darboux polynomial: x1 > 0)
▶ Refinement 2 (using qualitative analysis x1 > 0 ∧ x2 > 0)

▶ Refinement 3 (using a barrier certificate x1 > 0 ∧ x2 > 0 ∧ p ≤ 0)
p = 3

8 x1 + 23
56 x2

1 − 123
56 x2 + 3

14 x1x2 + 29
28 x2

2 − 1

13 / 17



Strategies
Differential saturation

Idea: Iteratively refine the candidate invariant by cycling through primitive methods until
saturation or a suitable invariant is found

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

▶ Refinement 1 (using a Darboux polynomial: x1 > 0)
▶ Refinement 2 (using qualitative analysis x1 > 0 ∧ x2 > 0)
▶ Refinement 3 (using a barrier certificate x1 > 0 ∧ x2 > 0 ∧ p ≤ 0)

p = 3
8 x1 + 23

56 x2
1 − 123

56 x2 + 3
14 x1x2 + 29

28 x2
2 − 1

13 / 17



Strategies
Differential divide-and-conquer

Idea: Divide state space using an equational invariant p = 0, and find suitable invariants for
each partition recursively

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

▶ State space is partitioned into regions x1 < 0, x1 = 0, x1 > 0, which have no transitions
between them

▶ For x1 ≤ 0, no unsafe states, so the trivial invariant suffices
▶ For x1 > 0, a barrier certificate separates initial from unsafe states

14 / 17



Benchmarks
Benchmark suite of 150 continuous safety verification problems drawn from the literature
Variety of benchmarks: 2–16 dim, (non-)linear ODEs, syntactic complexity, topology, etc.

BC

DP

FI

QA

DS

2D 3D 4D 5D 6D 8D+

Selected benchmark problems (dimension: 2D-16D)

0

10

100

Duration (sec)

More extensive experiments & results in paper:
▶ Summary: 107/150 solved automatically, DS strategy is highly effective at combining

invariant generation primitives
▶ Various configuration parameters for differential saturation
▶ Effect of proof hints on sound invariant checking for KeYmaera X

15 / 17



Benchmarks
Benchmark suite of 150 continuous safety verification problems drawn from the literature
Variety of benchmarks: 2–16 dim, (non-)linear ODEs, syntactic complexity, topology, etc.

BC

DP

FI

QA

DS

2D 3D 4D 5D 6D 8D+

Selected benchmark problems (dimension: 2D-16D)

0

10

100

Duration (sec)

Different classes of benchmarks can
often only be solved using different

invariant generation primitives

More extensive experiments & results in paper:
▶ Summary: 107/150 solved automatically, DS strategy is highly effective at combining

invariant generation primitives
▶ Various configuration parameters for differential saturation
▶ Effect of proof hints on sound invariant checking for KeYmaera X

15 / 17



Benchmarks
Benchmark suite of 150 continuous safety verification problems drawn from the literature
Variety of benchmarks: 2–16 dim, (non-)linear ODEs, syntactic complexity, topology, etc.

BC

DP

FI

QA

DS

2D 3D 4D 5D 6D 8D+

Selected benchmark problems (dimension: 2D-16D)

0

10

100

Duration (sec)

Different classes of benchmarks can
often only be solved using different

invariant generation primitives

Differential Saturation (DS)
can solve problems that no
primitive can solve alone

More extensive experiments & results in paper:
▶ Summary: 107/150 solved automatically, DS strategy is highly effective at combining

invariant generation primitives
▶ Various configuration parameters for differential saturation
▶ Effect of proof hints on sound invariant checking for KeYmaera X

15 / 17



Benchmarks
Benchmark suite of 150 continuous safety verification problems drawn from the literature
Variety of benchmarks: 2–16 dim, (non-)linear ODEs, syntactic complexity, topology, etc.

BC

DP

FI

QA

DS

2D 3D 4D 5D 6D 8D+

Selected benchmark problems (dimension: 2D-16D)

0

10

100

Duration (sec)

Different classes of benchmarks can
often only be solved using different

invariant generation primitives

Differential Saturation (DS)
can solve problems that no
primitive can solve alone

More extensive experiments & results in paper:
▶ Summary: 107/150 solved automatically, DS strategy is highly effective at combining

invariant generation primitives
▶ Various configuration parameters for differential saturation
▶ Effect of proof hints on sound invariant checking for KeYmaera X

15 / 17



Outline

Introduction: Formal Verification for CPS

Background: Continuous Invariants and Checking

Pegasus: A Framework for Sound Continuous Invariant Generation

Conclusion

16 / 17



Thank you for your attention!

Pegasus is an effective and sound continuous
invariant generator for hybrid systems verification

http://pegasus.keymaeraX.org

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

-2 -1 0 1 2 x1

-2

-1

0

1

2

x2

BC

DP

FI

QA

DS

2D 3D 4D 5D 6D 8D+

Selected benchmark problems (dimension: 2D-16D)

0

10

100

Duration (sec)

17 / 17



Handling Invariants
Design choices in proof assistants

prover
assistant

LZZ
procedure

yes/no
goal

Using external oracles

Less soundness-critical code

KeYmaera Xassistant

dL tactics

dL axioms ⊢ goal

goal

(Untrusted, but checked) proof using tactics

1 / 2



Primitives
Discrete abstraction

Idea: Partition Rn into discrete states S1, . . . , Sk defined by some predicates & compute the
discrete transition relation in the resulting abstraction

2 / 2


	Introduction: Formal Verification for CPS
	Background: Continuous Invariants and Checking
	Pegasus: A Framework for Sound Continuous Invariant Generation
	Conclusion
	Appendix

