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Introduction
What this talk is about

Formal verification for cyber-physical systems (CPS)

Discrete computational controllers
interacting with

continuous real-world physics,
modeled as hybrid systems

Mathematics-based
tools & techniques providing

rigorous guarantees
for computer systems

Why? Need rigorous & exhaustive proofs for these safety-critical systems
Alongside nonexhaustive simulation, field testing, and other validation methods
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Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

3 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

3 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

3 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

Invariants help tighten overapprox-
imations and (sometimes) extend
analyses to infinite time horizons

Invariants are key ingredients in
ODE safety proofs and part of
hybrid system loop invariants

3 / 17



Introduction
CPS Verification Tools

Reachability analysis:
Automatic, but overapproximate and
limited to bounded space and time

Deductive theorem proving:
More general specifications & proof
techniques, but offers less automation

Continuous invariants:
Set of states that can never be left when following
the continuous dynamics

This work: Pegasus continuous invariant generator
& sound integration with KeYmaera X, a hybrid
systems theorem prover

Invariants are key ingredients in
ODE safety proofs and part of
hybrid system loop invariants

3 / 17



Outline

Introduction: Formal Verification for CPS

Background: Continuous Invariants and Checking

Pegasus: A Framework for Sound Continuous Invariant Generation

Conclusion

4 / 17



Invariants in Discrete Systems

inductive
invariant

Claim: System cannot reach bad state(s)
from the initial state(s).
Justification: The invariant is closed un-
der the system’s discrete transitions.

Idea: Proving safety for system reduces
to finding a suitable invariant
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Invariants in Continuous Systems

 

Ordinary Differential Equations (ODEs)

States: x⃗ ∈ Rn

Dynamics: x⃗′ = f(x⃗)

Trajectories of the system (in green) are
solutions of the ODE from an initial state

Claim: System cannot reach bad
state(s) from the initial state(s).
Justification: The invariant is closed un-
der the system’s continuous dynamics

Idea: Proving safety for continuous
systems reduces to finding suitable
continuous invariants

6 / 17



Invariants in Continuous Systems

 

Ordinary Differential Equations (ODEs)

States: x⃗ ∈ Rn

Dynamics: x⃗′ = f(x⃗)

Trajectories of the system (in green) are
solutions of the ODE from an initial state

Claim: System cannot reach bad
state(s) from the initial state(s).
Justification: The invariant is closed un-
der the system’s continuous dynamics

Idea: Proving safety for continuous
systems reduces to finding suitable
continuous invariants

6 / 17



Checking Continuous Invariants

Checking whether a (polynomial arithmetic) formula defines a continuous invariant is decidable
(Liu, Zhan & Zhao, EMSOFT 2011).

LZZ procedureformula, ODE yes/no

Differential dynamic logic dL is sound and complete for proving continuous invariance
(Platzer & Tan, LICS 2018).

proverformula, ODE
formal proof (or disproof)
of invariance(KeYmaera X)

dL prover
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Pegasus Overview

This work: Sound and automated continuous invariant generation with Pegasus

Pegasus (implemented in Wolfram Language) has:
▶ a simple continuous safety verification problem classifier
▶ invariant generation primitive methods and strategies for combining them
▶ proof hints for sound invariant checking in KeYmaera X
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Primitives
Qualitative analysis

Idea: Perform discrete abstraction using heuristics & other sources in the input problem
(using LZZ to test the transition relation)

Some sources of predicates:
▶ right-hand sides of ODEs, their factors, etc.
▶ functions defining the pre/postcondition and domains
▶ physically meaningful quantities (e.g. divergence of the vector field)
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Primitives
First integrals and Darboux polynomials

Idea: Find conserved quantities of the continuous system
Functions p such that p′ = 0 (i.e. the rate of change of p w.r.t. the ODEs is 0)

Techniques:
▶ Polynomial first integrals (of bounded degree) can be generated using linear algebra
▶ Darboux polynomials p′ = αp, for polynomial α (gen. with computer algebra techniques)
▶ Rational functions p = q

r , for polynomials q, r (combine Darboux poly. and lin. algebra)
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Primitives
Barrier certificates

Idea: find a continuous invariant p ≤ 0 numerically (Prajna and Jadbabaie, HSCC 2004)
Generalizes to vector barrier certificates (our work, FM 2018)

Techniques:
▶ differential inequalities, e.g. p′ ≤ 0, p′ ≤ λp (λ ∈ R), and
▶ sum-of-squares decomposition (via semidefinite programming)
▶ linear programming relaxations
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Strategies
Differential saturation

Idea: Iteratively refine the candidate invariant by cycling through primitive methods until
saturation or a suitable invariant is found

▶ Refinement 1 (using a Darboux polynomial: x1 > 0)
▶ Refinement 2 (using qualitative analysis x1 > 0 ∧ x2 > 0)
▶ Refinement 3 (using a barrier certificate x1 > 0 ∧ x2 > 0 ∧ p ≤ 0)

p = 3
8 x1 + 23

56 x2
1 − 123

56 x2 + 3
14 x1x2 + 29

28 x2
2 − 1
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Strategies
Differential divide-and-conquer

Idea: Divide state space using an equational invariant p = 0, and find suitable invariants for
each partition recursively
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▶ State space is partitioned into regions x1 < 0, x1 = 0, x1 > 0, which have no transitions
between them

▶ For x1 ≤ 0, no unsafe states, so the trivial invariant suffices
▶ For x1 > 0, a barrier certificate separates initial from unsafe states
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Benchmarks
Benchmark suite of 150 continuous safety verification problems drawn from the literature
Variety of benchmarks: 2–16 dim, (non-)linear ODEs, syntactic complexity, topology, etc.
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Selected benchmark problems (dimension: 2D-16D)
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More extensive experiments & results in paper:
▶ Summary: 107/150 solved automatically, DS strategy is highly effective at combining

invariant generation primitives
▶ Various configuration parameters for differential saturation
▶ Effect of proof hints on sound invariant checking for KeYmaera X
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Thank you for your attention!

Pegasus is an effective and sound continuous
invariant generator for hybrid systems verification

http://pegasus.keymaeraX.org
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Handling Invariants
Design choices in proof assistants

prover
assistant

LZZ
procedure

yes/no
goal

Using external oracles

Less soundness-critical code

KeYmaera Xassistant

dL tactics

dL axioms ⊢ goal

goal

(Untrusted, but checked) proof using tactics
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Primitives
Discrete abstraction

Idea: Partition Rn into discrete states S1, . . . , Sk defined by some predicates & compute the
discrete transition relation in the resulting abstraction
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